При выборе метода контроля руководствуются следующими положениями:
- выбранный метод должен обеспечить максимальную вероятность выявления поверхностных и подповерхностных дефектов.
- выбранный метод должен быть экономически эффективным.
В связи с тем, что материал, из которого изготовлена вал редуктора ТРКП является ферромагнетиком, а возможные дефекты лежат в поверхностной и подповерх- ностной зоне, наиболее целесообразно проводить контроль магнитопорошковым, ультразвуковым или феррозондовым методом. На основе литературных данных приведенных в источнике, я отдал предпочтение магнитопорошковому методу.
Суть магнитопорошкового метода заключается в следующем: магнитный поток в бездефектной части изделия не меняет своего направления, если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.
Наиболее распространенным способом нанесения порошка на контролируемую поверхность является нанесение порошка в виде магнитной суспензии. После намагничивания или во время него, деталь или её контролируемый участок должны быть равномерно и обильно обработаны суспензией с заданной концентрацией порошка. Обработка проводится либо путём полива детали суспензией, либо путём окунания её в ванну с хорошо перемешанной суспензией. Осмотр деталей проводится, как правило, невооруженным глазом после полного стекания с контролируемого участка основной массы суспензии.
Магнитопорошковый метод позволяет обнаруживать поверхностные и подповерхностных дефекты типа нарушений сплошности материала: трещины различного происхождения, флокены, закаты, надрывы, волосовины, расслоения, дефекты сварных соединений и др. соединений.
Необходимым условием применения магнитопорошкового метода для выявления дефектов является наличие доступа к объекту контроля для намагничивания, обработки индикаторными материалами и оценки качества.
Результаты контроля объектов магнитопорошковым методом зависят от следующих условий:
– магнитные характеристики материала,
– форма и размеры ОК;
– шероховатость поверхности ОК;
– наличие и уровень поверхностного упрочнения;
– толщина немагнитных покрытий;
– местоположение и ориентация дефектов;
– напряженность магнитного поля и его распределение по поверхности объекта;
– угол между направлением намагничивающего поля и плоскости дефектов;
– свойства магнитного индикатора и способ его нанесения на объект контроля;
– способ и условия регистрации индикаторного рисунка выявляемых дефектов.
Магнитопорошковый метод может быть использован как для контроля деталей, изготовленных из ферромагнитных материалов, так и для контроля объектов с немагнитным покрытием (слой краски, лака, хрома, меди, кадмия, цинка и др.). Объекты с немагнитными покрытиями толщиной < 40 мкм могут быть проконтролированы без существенного уменьшения выявляемости дефектов. Колёсная пара не имеет немагнитного покрытия и поэтому целесообразно использовать для её контроля магнитопорошковый метод.
Магнитопорошковый метод не позволяет определять глубину и ширину поверхностных дефектов, размеры подповерхностных дефектов и глубину их залегания, поэтому магнитопорошковый метод совмещают с ультразвуковым.
Магнитный контроль в зависимости от физико – химических свойств ОК, его формы и размеров, типа и расположения искомых дефектов, а также мощности намагничивающих устройств проводят способом приложенного магнитного поля (СПП) или способом остаточной намагниченности (СОН).
СПП контролируют детали из магнитомягких, малоуглеродистых сталей, обладающих малыми значениями Вr и коэрцитивной силы Нc (менее 800 А/м). Например, оси колесных пар, детали автосцепки дефектоскопируют в приложенном переменном магнитном поле при продольном намагничивании магнитопорошковым методом. Явление поверхностного эффекта, проявляющееся при этом, способствует лучшему выявлению поверхностных трещин: магнитный поток концентрируется в поверхностном слое металла, увеличивая магнитное поле рассеяния над дефектом.
Требования безопасности во время работ
Работающим на открытом воздухе при эквивалентной температуре наружного воздуха ниже —25 °С должен быть обеспечен ежечасный обогрев в помещении с температурой воздуха ниже 25 °С. Эксплуатация транспортных средств и механизмов в районах Крайнего Севера должна осуществляться в соответствии с «Правилам ...
Кинематический расчет рулевого управления
Исходные данные автобуса низкопольного городского типа большого класса МАЗ-103 4×2: База – 6140мм; Колея – 2048мм; Размерность шин – 11,00/70R22,5; Полная масса – 18000кг; Снаряженная масса – 10800кг; Нагрузка на управляемую ось – 6500кг; Тип рулевого механизма – винт и шариковая гайка-рейка; ...
Самуэль Пирпонт Лэнгли
После выдающихся успехов в астрономии и во время работы в Смитсоновском институте в качестве Секретаря, Самуэль Пирпонт Лэнгли начал серьёзные исследования в области аэродинамики в учреждении, которое называется сегодня Университетом Питсбурга. В 1891 он издал детальное описание своих исследований ...