При выборе метода контроля руководствуются следующими положениями:
- выбранный метод должен обеспечить максимальную вероятность выявления поверхностных и подповерхностных дефектов.
- выбранный метод должен быть экономически эффективным.
В связи с тем, что материал, из которого изготовлена вал редуктора ТРКП является ферромагнетиком, а возможные дефекты лежат в поверхностной и подповерх- ностной зоне, наиболее целесообразно проводить контроль магнитопорошковым, ультразвуковым или феррозондовым методом. На основе литературных данных приведенных в источнике, я отдал предпочтение магнитопорошковому методу.
Суть магнитопорошкового метода заключается в следующем: магнитный поток в бездефектной части изделия не меняет своего направления, если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.
Наиболее распространенным способом нанесения порошка на контролируемую поверхность является нанесение порошка в виде магнитной суспензии. После намагничивания или во время него, деталь или её контролируемый участок должны быть равномерно и обильно обработаны суспензией с заданной концентрацией порошка. Обработка проводится либо путём полива детали суспензией, либо путём окунания её в ванну с хорошо перемешанной суспензией. Осмотр деталей проводится, как правило, невооруженным глазом после полного стекания с контролируемого участка основной массы суспензии.
Магнитопорошковый метод позволяет обнаруживать поверхностные и подповерхностных дефекты типа нарушений сплошности материала: трещины различного происхождения, флокены, закаты, надрывы, волосовины, расслоения, дефекты сварных соединений и др. соединений.
Необходимым условием применения магнитопорошкового метода для выявления дефектов является наличие доступа к объекту контроля для намагничивания, обработки индикаторными материалами и оценки качества.
Результаты контроля объектов магнитопорошковым методом зависят от следующих условий:
– магнитные характеристики материала,
– форма и размеры ОК;
– шероховатость поверхности ОК;
– наличие и уровень поверхностного упрочнения;
– толщина немагнитных покрытий;
– местоположение и ориентация дефектов;
– напряженность магнитного поля и его распределение по поверхности объекта;
– угол между направлением намагничивающего поля и плоскости дефектов;
– свойства магнитного индикатора и способ его нанесения на объект контроля;
– способ и условия регистрации индикаторного рисунка выявляемых дефектов.
Магнитопорошковый метод может быть использован как для контроля деталей, изготовленных из ферромагнитных материалов, так и для контроля объектов с немагнитным покрытием (слой краски, лака, хрома, меди, кадмия, цинка и др.). Объекты с немагнитными покрытиями толщиной < 40 мкм могут быть проконтролированы без существенного уменьшения выявляемости дефектов. Колёсная пара не имеет немагнитного покрытия и поэтому целесообразно использовать для её контроля магнитопорошковый метод.
Магнитопорошковый метод не позволяет определять глубину и ширину поверхностных дефектов, размеры подповерхностных дефектов и глубину их залегания, поэтому магнитопорошковый метод совмещают с ультразвуковым.
Магнитный контроль в зависимости от физико – химических свойств ОК, его формы и размеров, типа и расположения искомых дефектов, а также мощности намагничивающих устройств проводят способом приложенного магнитного поля (СПП) или способом остаточной намагниченности (СОН).
СПП контролируют детали из магнитомягких, малоуглеродистых сталей, обладающих малыми значениями Вr и коэрцитивной силы Нc (менее 800 А/м). Например, оси колесных пар, детали автосцепки дефектоскопируют в приложенном переменном магнитном поле при продольном намагничивании магнитопорошковым методом. Явление поверхностного эффекта, проявляющееся при этом, способствует лучшему выявлению поверхностных трещин: магнитный поток концентрируется в поверхностном слое металла, увеличивая магнитное поле рассеяния над дефектом.
Тяговый расчет
Тип автомобиля – легковой. Тип привода – задний. Класс автомобиля – 2. Число мест - пп = 5. Снаряжённая масса автомобиля - mо = 1045 кг. Масса одного пассажира - mп = 75 кг. Масса багажа - mб = 10 кг. Максимальная скорость движения - Vmax = 165 км/ч или 45,8 м/с. Коэффициент сопротивления качению f ...
Дефектоскопирование колёсных пар
Шейки и предподступичные части осей после обработки подлежат испытанию магнитным дефектоскопом. Проверке дефектоскопами подлежат: Магнитным дефектоскопом: а) шейки, предподступичные части осей колёсных пар для подшипников скольжения – при полном и обыкновенном освидетельствовании, для роликовых под ...
Сборка вторичного вала КП КаМАЗ
Рис.5 Сборка вторичного вала КП 1. Зажмите вторичный вал (1) со стороны первичного вала. 2. Слегка смажьте игольчатый роликоподшипник (2) и насадите на вторичный вал. 3. Косозубую шестерню (3), 2-я передача, насадите на вторичный вал, чтобы шлицы для зубчатой муфты синхронизатора смотрели в сторону ...